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Moisture determination in hygroscopic drug substances by near
infrared spectroscopy
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Abstract

The moisture level in a hygroscopic drug substance was successfully determined by near infrared spectroscopy using
coulometric Karl Fischer titration as the reference method. The importance of sample handling and proper
application of the reference technique are stressed for this difficult sample type. Samples were prepared with moisture
levels from 0.5 to 11.4% (w/w) and reflectance spectra were collected over the spectral range 1100–2500 nm.
Calibration models were built using partial least squares (PLS) regression analysis. Optimum models were found by
choosing proper spectral ranges and number of PLS factors. The best calibration models were built using first
derivative spectra, a spectral range of 1850–1936 nm and 5 PLS factors. The corresponding standard error of
prediction was 0.11% (w/w) water. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traditional methods for moisture determina-
tion in pharmaceutical drug products are based
on weight loss on drying and Karl Fischer titra-
tion [1,2]. Gas chromatography is another method
which could provide comparable results [3]. How-
ever, each has pros and cons in terms of accuracy,
speed and ease of operation. Weight loss on dry-
ing is limited if the chemicals are unstable at
elevated temperatures or if other volatile species
are present. Gas chromatography is more expen-
sive and standardization can be difficult. Some

volatile drug substances might interfere with the
measurement. Karl Fischer titration is time con-
suming and uses toxic reagents. When determin-
ing low moisture levels and for hygroscopic
samples, all three methods are influenced by the
ambient moisture if strict precautions are not
taken.

Near infrared reflectance spectroscopy (NIRS)
is attractive for moisture determination because it
is rapid, non-destructive, no sample pretreatment
is needed and water has strong absorption bands
in this spectral region that provide the sensitivity
needed for accurate determination [4–7]. For ex-
ample, water of freeze-dried drug in a vial has
been measured with a calibration equation based
on the absorbancies at one or two wavelengths [4].
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Similarly, moisture in antibiotic powders has been
measured with multiple linear regression (MLR)
based on the information at four wavelengths [5].
However, the limits of accuracy have not been
fully explored. It is necessary to establish opti-
mum methodology for the reference measure-
ment, for the NIRS measurement, for sample
handling during the entire process and for the
calibration model, in order to build an NIRS
method which is accurate, precise and robust.

A study was performed to establish a near
infrared reflectance (NIR) method for determin-
ing the moisture level in a hygroscopic bulk drug
substance. This hygroscopic test material was cho-
sen because it is a challenging sample type for
building an optimum NIR calibration model. Ex-
perimental techniques and data handling methods
are presented which result in the most accurate
NIR spectroscopic method. These techniques in-
clude a reliable reference method based on coulo-
metric Karl Fischer titration which minimized the
interference from ambient moisture and an opti-
mized PLS regression model.

2. Experimental

2.1. Apparatus and materials

Diffuse reflectance spectra were obtained with
an NIRSystems 6500 spectrophotometer (Perstorp
Analytical, Silver Spring, MD) equipped with a
Rapid Content Analyzer (RCA). Karl Fischer
titration was performed with a 737 KF Coulome-
ter (Metrohm, Switzerland). Samples were intro-
duced using 3 and 10 ml plastic syringes (Becton
Dickinson, Franklin Lakes, NJ) with special 10
cm long needles (22 gauge) (Metrohm, Switzer-
land). The KF reagent was HYDRANAL®-Cou-
lomat AG (Crescent Chemical, Hauppauge, NY).

The drug substance used in this study is very
hygroscopic. The water content can vary from 0.5
to 14% (w/w) at a rate of up to 0.02% min−1 as
ambient humidity changes. In order to protect the
material from humidity changes, the powder was
capped in 20 ml clear glass bottles with flat bot-
toms (Kimble Glass, Vineland, NJ). A moisture-
tight closure was obtained with Teflon coated

low-moisture stoppers (Diakyo D777-3 Gold
Butyl stoppers, The West Company, Lionville,
PA) and an aluminum crimp seal. Each bottle
contained approximately 150 mg of powder which
was loosely packed. Prior to capping, moisture
levels of these powders were adjusted from as dry
as possible to about 11% (w/w) using a humidity
controlled glove box. First, all powder samples
were dried to the same level by applying a vacuum
at 80°C for approximately 2 h. Approximate
target levels were then obtained by exposing vari-
ous bottles to humidity between ambient and 80%
R.H., and stoppering vials at appropriate times.
After capping and prior to the Karl Fischer titra-
tion, NIR spectra were obtained for each bottle.
Just before spectrum collection, each bottle was
gently shaken and then tapped gently in a way
that was shown to achieve reproducible packing.

2.2. Coulometric Karl Fischer titration and
calculation

The coulometric Karl Fischer titration method
used for this study was an in-house procedure for
the determination of moisture levels in freeze-
dried pharmaceutical products. A plastic syringe
was used to draw and dispense KF reagent from
the titration vessel until the drift value remained
below 12 mg min−1. The reagent in the dried
syringe was then injected through the stopper into
weighed bottles, completely dissolving the pow-
der. A syringe was also dried by the same ‘draw
and dispense’ process before drawing sample from
a bottle. The sample was injected into the titration
vessel and the amount of sample added was ob-
tained from the weight difference of the syringe
before and after the injection. All the operations
were optimized to minimize interference from am-
bient moisture. All vials used in this study were
assayed in triplicate by this procedure. Moisture
values were in the range 0.5–11.4% (w/w) with a
standard deviation of 0.09% (w/w). The Karl Fis-
cher titration results are listed in Table 1.

The percent (w/w) moisture level (Cw%) of the
sample powder was calculated by the following
equation:
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Table 1
Total number of samples and the corresponding moisture
levels, as measured by the coulometric Karl Fischer method

Moisture % (w/w)Moisture level

1 0.53, 0.46, 0.54, 0.53
1.72, 1.74, 1.74, 1.702
2.22, 2.16, 2.13, 2.163
4.09, 4.06, 3.95, 3.804
4.82, 4.935

6 5.72, 5.66, 5.77, 5.54, 5.60, 5.77, 5.70,
5.76, 5.81, 5.65

7 6.02, 6.08, 5.83
6.11, 6.048

9 6.53, 6.39, 6.40
7.82, 7.74, 7.7910

11 11.47, 11.08, 11.03, 11.32

software package accompanying this instrument
(NSAS version 3.50) was used to collect the spec-
tra. Partial least squares (PLS) regression was
performed with PLSplus/IQ in GRAMS/32
(Galactic Industries, Salem, NH).

3. Results and discussion

3.1. Spectral regions

Overlap of spectral bands is a typical character-
istic in the NIR region. It is difficult to find an
absorption band unique to a specific molecule in a
mixture of compounds. Fortunately, water has
large absorption bands with peak maxima around
1420 and 1920 nm in the near infrared region.
These absorption bands are not only strong but
typically well resolved from the absorption bands
of other chemicals, especially the first combina-
tion bands of O–H around 1920 nm [9]. The
exact position and width of these bands might
vary slightly depending on the chemical environ-
ment [10].

Significant changes in spectral features of the
sample studied have been observed when the
moisture level varies. Figs. 1 and 2 show the effect
of water on the raw reflectance spectra of these
samples, along with the corresponding first and
second derivative spectra. In Fig. 1, the ab-
sorbance around 1900 nm increases when the
water level increases from 0.53 to 11.08% (w/w).
These variations in the raw absorbance spectra
are retained in the corresponding first and second
derivative spectra. By visual inspection of these
representative spectra, it is clear that a quantita-
tive relationship exists between the magnitude of
absorption and the moisture level.

3.2. PLS regression

Simple linear or multiple linear regression are
used for most applications of NIRS for moisture
analysis. This is because the water band is strong
and usually isolated from other significant spec-
tral interference. In this work, we chose to use
PLS regression for construction of calibration
models. The key element of this work was to
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where Wc is the weight in grams of the powder in
the bottle; Wd is the weight of diluent (g) added to
the bottle for reconstitution prior to titration; Ws

is the weight of liquid sample (g) injected into the
titrator; Ww is the titrated weight of water (mg);
and Cb is the amount of water in the blank
diluent in mg of water g−1 of diluent. By testing
the addition and removal of dried solvent to
empty, dry bottles, we have determined that the
typical blank level is 10 mg g−1 and use this value
in all of our calculations.

2.3. Spectrum collection and processing

Each spectrum was the average of 16 scans over
the range 1100–2500 nm. The ratio of each reflec-
tance spectrum against the corresponding refer-
ence spectrum of a white ceramic was taken.
Absorbance spectra were generated as the nega-
tive logarithm of the ratios of the spectra. After
approximately 30 min of measurement, a new
reference spectrum was collected for subsequent
sample spectra. Three spectra were collected se-
quentially for each sample. Spectra collected over
3 weeks were included in this study. A total of 129
spectra were obtained for the 43 samples. The
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Fig. 1. Reflectance, first, and second derivative spectra of the
bulk material with different moisture levels (expressed as per-
cent w/w) in the spectral range 1850–2050 nm.

ables in the absorbance matrix and concentration
matrix. The factors are believed to better describe
the analytical variations in the data matrix with
fewer dimensions. One major advantage of such
factor-based methods is that the factors are or-
thogonal to each other and thus eliminate
collinearity without deletion of spectral informa-
tion. Noise is usually reduced because it spreads
throughout all the factors while the variations of
interest (such as concentrations) are modeled into
the first few factors. PLS is believed to be the best
multivariate regression tool to remove spectral
noise and other irrelevant information [8]. In ad-
dition, it can model nonlinearity [11].

The samples were divided into two data sets,
one for calibration and one for prediction. There
were 90 spectra from 30 samples in the calibration

Fig. 2. Reflectance, first, and second derivative spectra of the
bulk material with different moisture levels (expressed as per-
cent w/w) in the spectral range 1350–1575 nm.

develop a reference technique and method of han-
dling samples that reaches the limit of precision
and accuracy. If experimental conditions are cho-
sen properly, PLS is less likely to result in a model
that is limited by minor sources of variance and
should be the best choice for illustrating the qual-
ity of our overall process. Also, for this chemical
system, there are potential sources of nonlinearity
related to a spectral feature around 1925–1950
nm. Even with these considerations, the best
MLR model with this data set results in only
slightly larger errors in moisture prediction.

PLS is a factor-based analysis [8]. During this
process the variables of the original data matrix
are reconstructed with new variables (factors)
which are linear combinations of the original vari-
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set and 39 spectra from 13 samples in the predic-
tion set. The former is used to build the calibra-
tion models while the latter is used to evaluate the
performance of these calibration models.

The spectral range and the number of PLS
factors are the two most crucial parameters in the
PLS regression process [8]. Based on the absorp-
tion features in Figs. 1 and 2, we investigated
several sub-ranges within the 1350–1500 and
1850–1990 nm ranges. The first region focuses on
the 1420 nm absorption bands. The second one
covers the 1920 nm absorption bands. Calibration
models were built by using various combinations
of spectral range and data pretreatment methods.
Each pretreatment method performs differently
and the corresponding standard errors of predic-
tion (SEP) for the prediction data set are listed in
Table 2.

The optimum number of PLS factors was deter-
mined for each set of parameters. For each com-
bination of parameters in Table 2, the number of

factors listed corresponds to the factors recom-
mended by the PLS-1 program [13] based on the
F-test of the prediction residual error sum of
squares (PRESS). The number of PLS factors
suggested by this method is expected to coincide
with the optimum number of PLS factors. How-
ever, caution is advisable, due to the fact that the
number of PLS factors recommended by this
method sometimes does not equal the number of
factors which provide the lowest SEP to the pre-
diction data set. Therefore, the number of factors
was corrected to correspond to the lowest SEP
under the same conditions. In the spectral range
1350–1500 nm, for example, the optimum calibra-
tion model built with the second derivative spec-
tra uses 6 PLS factors and provides an SEP of
0.21% (w/w).

3.3. Spectral pretreatment

Obviously, PLS regression is a powerful tool
that can extract the spectral variation related to
varying moisture level even without any data pre-
treatment (see Table 2). In other literature, spec-
tral pretreatment has been shown to improve the
quality of the spectra and thus improve the per-
formance of the calibration models [12]. In this
application, spectral pretreatment by multiplica-
tive scatter correction (MSC) did not improve the
performance of the calibration models. Spectral
pretreatment with derivative calculation does
slightly improve the performance of the calibra-
tion models in some cases. Most calibration mod-
els built with derivative spectra perform similarly,
regardless of whether the first or second derivative
is used. More PLS factors are needed to account
for the variations in the data set using a larger
spectral range. On the other hand, fewer PLS
factors are usually required after spectral pretreat-
ment by derivatives. This effect is minor here,
because strong absorption bands of water are
involved in this study. In addition, in all cases (see
Figs. 1 and 2) baseline shift is minimized after
derivative pretreatment.

The best calibration model was obtained with
first derivative spectra over the 1850–1936 nm
spectral range with 5 PLS factors. This model has
an SEP of 0.11% (w/w). The concentration corre-

Table 2
Results from calibration models built by PLS regression with
different data pretreatment methods in different spectral re-
gions

Data pre- SEP %(w/w)Spectral PLS factors
treatmentrange (nm)

1350–1500 None 8 0.21
MSC1350–1500 6 0.27

0.237Mean center1350–1500
First deriva- 0.251350–1500 7
tive
Second1350–1500 6 0.21
derivative

None 5 0.161850–1936
MSC1850–1936 7 0.20
Mean center1850–1936 0.155

1850–1936 First deriva- 5 0.11
tive

5 0.221850–1936 Second
derivative

0.131850–1990 None 8
0.2361850–1990 MSC
0.13Mean center1850–1990 6

6First deriva- 0.131850–1990
tive

6 0.151850–1990 Second
derivative
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Fig. 3. Concentration correlation plot for the calibration set.
The calibration model is built with the first derivative spectra
and five PLS factors in the spectral range 1850–1936 nm. The
solid line is a unity line.

sis (R2=0.997) are 0.9978 and 0.0107% (w/w),
respectively.

4. Conclusion

Moisture levels in drug substances can be mea-
sured quite accurately by NIR spectroscopy, even
for a difficult to handle hygroscopic material, with
a standard error of prediction of 0.11% (w/w) in
the range 0.5–11.4% (w/w). This result is only
possible because of the accuracy and precision of
our reference method, which provides a standard
error of deviation of 0.09% (w/w) for three repli-
cates at moisture levels of 0.5–11.4%. The han-
dling and transfer of samples in sealed bottles
further ensures the accuracy of the reference mea-
surement, by eliminating interference from ambi-
ent moisture. The other key element of this
accurate and precise method is the optimization
of the PLS regression. Valid calibration models
can be constructed by PLS regression in the spec-
tral regions of the first overtones and first combi-
nation bands of water. Spectral pretreatment by
derivative techniques improves the quality of the
spectra in some cases. In this work, the first
derivative calculation in the spectral range 1850–
1936 nm provides the best calibration model. The
results of this study explore the limits of accuracy
and precision for water determination by NIRS.
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